V

(20516)

Roll No.

BCA-IV Sem.

18019

B. C. A. Examination, May 2016 OPTIMIZATION TECHNIQUES

(BCA-404)

(New)

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt questions from all Sections as per instructions.

Section-A (Very Short Answer Questions)

Attempt all the *five* questions of this Section. Each question carries 3 marks. Very short answer is required not exceeding 75 words. $3\times5=15$

- Define a general and standard linear programming problem.
- 2. Solve the following LPP by graphical method:

Maximize:

 $z = 2x_1 + x_2$

Subject to:

 $3x_1 + 4x_2 \le 6$

 $6x_1 + x_2 \le 3$

 $x_1, x_2 \ge 0.$

- 3. Customers arrive at a booking office window, being manned by a single individual at a rate of 25 per hour. Time required to serve a customer has exponential distribution with a mean of 120 seconds. Find the mean waiting time of a customer in the queue.
- Draw economic order quantity graph showing the relationship of inventory costs with order quantity and inventory level overtime.
- Explain briefly replacement policies for items whose efficiency deteriorates with time.

Section-B (Short Answer Questions)

Attempt any two questions from this Section. Each question carries $7\frac{1}{2}$ marks. $7\frac{1}{2} \times 2 = 15$ https://www.ccsustudy.com

6. Find the sequence that minimizes total elapsed time to complete the following six jobs and also find the minimum time:

Jobs: 1 2 3 4 5 6

MachineI: 3 12 15 6 10 9

Machine II: 8 10 10 6 12 3

7. Solve the following assignment problem represented by the matrix :

18019

https://www.ccsustudy.com

https://www.ccsustudy.com

https://www.ccsustudy.com

https://www.ccsustudy.com

https://www.ccsustudy.com

8. Obtain the steady state equations for the model {(M/M/1):(∞/FCFS)} and also find the formula for mean and the variance of the queue length.

Section-C

(Detailed Answer Questions)

Attempt any three questions from this Section. Each question carries 15 marks. $15 \times 3 = 45$

9. Determine an optimum basic feasible solution to the transportation problem given below:

where O_i and D_j denote *i*th origin and *j*th destination respectively.

https://www.ccsustudy.com (4)

10. Use simplex method to solve the following LPP:

Maximize: $Z = 4x_1 + 10x_2$ Subject to: $2x_1 + x_2 \le 50$ $2x_1 + 5x_2 \le 100$ $2x_1 + 3x_2 \le 90$ $x_1, x_2 \ge 0$

11. Obtain the dual problem of the following LPP:

Maximize:
$$f(x) = 2x_1 + 5x_2 + 6x_3$$

Subject to:
$$5x_1 + 6x_2 - x_3 \le 6$$

 $-2x_1 + x_2 + 4x_3 \le 4$
 $x_1 - 5x_2 + 3x_3 \le 1$
 $-3x_1 - 3x_2 + 7x_3 \le 6$
 $x_1, x_2, x_3 \ge 0$

Also verify that the dual of the dual problem is the primal problem.

- Derive the Wilson EOQ formula. What are the practical limitations of EOQ formula? Also discuss the costs involved in an inventory problem.
- 13. Explain the following:
 - (i) Present worth factor (pwf)
 - (ii) Discount rate
 - (iii) Dual simplex method
 - (iv) Group replacement and individual replacement policy
 - (v) Tic-tac problem.

https://www.ccsustudy.com